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We show that the integral of a completely n-unisolvent function defined on an
interval is a completely # -+ |-unisolvent function. 1995 Academic Press, Inc.

1. INTRODUCTION

In the following let /' be a continuous function R”x I — R where /= R is
some interval and let INT(f) be the set of all functions 7— R: x+—
flay, ar, a5, ., a,, X), a,d>,..,a,eR. If n=22 let f,, aeR be the
map R" 'xI—R:(a,,das,..a, x)—fla, a,, a;, .., 4, x). A function
geINT(f) interpolutes meN points (x,y,)elxR, ie{l,2,..m} if
gxy=y forallief{l,2,. m}.

We say that fis n-unisolvent (or unisolvent of degree n) if for any choice
of n points (x;, y)elIxR, ie{l,2,..,n}, x,<x,< .- <x, there exists a
uniquely determined g € INT(f) that interpolates all # points. The classical
example for such a function is p,.: R*x I: (a;, ta, .o @,y X) > 30 apx" K

If n=1, we will say that fis completely 1-unisolvent if it is 1-unisolvent.
For n =2 we say that [ is completely n-unisolvent if and only if:

(1) the function [ is n-unisolvent;

(2) for all ae R the function f, is completely (# — 1)-unisolvent.

Let #/(.#]) be the set of all (completely) n-unisolvent functions R" x
I — R. The function p,,ne N, as we defined it above, is contained in .#/,
Note that this is just the interpolation system {1, x, x?, .., x" '} combined
into a completely n-unisolvent function. More generally, if {u;}7 ] is a
complete Chebyshev system (see, e.g., [ 1]) of continuous functions defined
on the interval 7, then R"xI—R:(a,,ay, ... d,, X)—= 35 _ | au, . 1S a
completely n-unisolvent function.

Here are some examples of completely 2-unisolvent functions that do not

arise from complete Chebyshev systems in this manner: Let : R - R be a
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continuously differentiable function with a bijective derivative. Then
[ R*xR:(a,, a5, x)—h(x+a,)+a, is a completely 2-unisolvent func-
tion. Examples for A are the functions R— R: x+—x?", neN. In [5, §2] it
is shown that the graphs of the functions in INT( ") together with the ver-
ticals in the xy-plane form the line set of an affine plane that has the
xy-plane as its point set. The sets INT(f"), ae R correspond to parallel
classes of lines in this plane. Affine planes like this are examples of 2-dimen-
sional affine planes. In [3] we show that any 2-dimensional affine plane
corresponds to a completely 2-unisolvent function. In the same paper we
also show how (in general non-linear) completely 3-unisolvent functions
can be constructed from so-called 2-dimensional Laguerre planes.

Given an arbitrary (completely) n-unisolvent function fe . /( fe #!) and
a subinterval I’ of I, it is clear that the “restriction” of f to I' is also a
(completely) n-unisolvent function.

For more information about unisolvent functions the reader is referred
to [4] and [6].

2. INTEGRATING COMPLETELY UNISOLVENT FUNCTIONS

Let /< R be an interval that contains the point b. For every fe .#! we
define

x

SEfY R I xT— R (u,,az,...,an“,x)r—»J‘ fay,ay,...a,,)dt+a,,,.

4

The aim of this note is to show that

PROPOSITION 2.1. Let fe.#], ne N where I is an interval that contains
the point b. Then S®(f)e S !

n+1-

In the special case where f arises from a complete Chebyshev system, as
described above, this result is well-known (see, e.g., [ 7, Lemma 13.27).

In order to be able to prove 2.1 we will make constant use of some facts
we want to fix in the form of two lemmas. As a special case of what
Tornheim proved in [6, Theorem 5] we have

LEMMA 22. Let Ic R be a closed interval, let fe .¥ ,{ , and let n sequences
of points {(x; ;, ¥ )} ien, j€{L2, ., n} in IXR converge to n points
(x;. y;), respectively, such that x, ;# x; , and X;# x, if j#k. Furthermore,
for all ie N let f* be the uniquely determined function in INT( f) that inter-
polates the n points (x; ;, v, ;), j€ {1, 2, ..., n}. Then the sequence of functions
{ [} ic n converges uniformly to the uniquely determined function in INT(f)
that interpolates the n points (x;,y;), je {1,2, .., n}.
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We also need the following

LEMMA 23. Let IR be some interval that contains 0, let fe 5| and
S1,0)>£(0,0)( f(1,0) <f(0,0)). Then all functions R— R:ar fla, x),
xel are strictly increasing (decreasing) homeomorphisms. Furthermore,
given x,, xy €1, x, <x,, the function g: R - R: a }—»Rl Sfla, t)ydt is a strictly
increasing (decreasing) homeomorphism.

Proof. Let f(1,0)>/(0,0). Let xel If f(1,x)</f(0, x), then there
exists an x* e [ such that f(1, x*) = f(0, x*). This is impossible since fe.#1.
The function R — R: ¢ f{a, x) is continuous and bijective by definition,
i.e., 11 1s a homeomorphism. Since f{1, x) > (0, x), this homeomorphism is
strictly increasing. Now it is clear that the function g is continuous and
strictly increasing. We show that g is biective. For all aeR let m, =
min, [y, o §fla, X)) and let x, be a point in [x,, x,] where f,, assumes
this minimum. The function R — R: ¢+ m,, is clearly strictly increasing and
it therefore suffices to show that lim,_, , /m, = oo to make sure that indeed
lim, ., {2 f(a, t)di=oc. Let {a,},  be a strictly increasing sequence of
real numbers such that lim; , , ;= oc. Assume the sequence {m, },. has
a finite accumulation point m*, ie. im, , , m, =m* Then we can find
a subsequence {a};,.« of {a,},c~ and an x*e[x,, x,] such that
lim,_, , m(,;zm* and lim,_, , .\'(,:=x*. Since f is l-unisolvent there is a
uniquely determined «*e R such that f,.(x*)=m* By Lemma 2.2, we
know that the sequence of functions {f,},. converges uniformly to
the function f,. on the interval [x,,x,]. This implies that m*
=min, (,, . {fla* x)}. Let ie N be such that «;>a*. Then m* <.
This is a contradiction. We can use a similar argument to show that
lim, ., . §2fla, t)dr=—oc. Hence g is bijective.

The respective conclusions in the case f(1, 0) <f(0, 0) can be derived in
a similar fashion. |

Proof of 2.1. W.lo.g we may assume that »=0. We abbreviate S’(f)
by S(f).

We are going to use induction on n to prove this result. Let n=1.
Furthermore, let «€R. Then S5(f), is the function Rx7— R: (a,, x)—
Vs fla, t)dt +a,. This function is clearly completely l-unisolvent. Let
(X0, ¥o), (X1, ¥1)eR?, x,, x, €1, xy<x,. We have to show that there is a
uniquely determined function in INT(S{f)) that interpolates both points.
The functions that interpolate the point (x,, yy) are the functions /— R:
X P, +j’x"u fla, tydt, ae R. It therefore suffices to show that the function
R— Riars {3 f(a, 1) dr is bijective. By Lemma 2.3, this is the case.

Let the statement in the proposition be true for all functions in .#/ | for
some n>2 and let fe.#! Furthermore, let aeR Then S(f),=S(f,).
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Since f,e.#/ | we conclude that S(f),e.#.. Now we have to show the
following: Let (xg. ¥o)y (X1, Y1)y v (Xpops Vo) €IX R, x,<x;,,,
ie{0,1,.,n—2} be n points, and let x, e, x,_, <x,. Then for all ye R
there exists a uniquely determined function in INT(S(f)) that interpolates
the n points (xg, ¥o), (x,,¥1), s (X,_1»¥,_1) and the point (x,, y). The
functions that interpolate the (first) n points are the functions I — R:
x> Yo+ |3, fla. dy(a), da), ... $,_,(a), t)dl, ae R where the functions
¢ R—R,ie{l,2, .., n—1} are uniquely determined by the n — 1 equations

j"\"f(a. $1(a). $oa), b, (@) ) di=y,—yoi=1,2, on—1

since for all aeR the function S(f), is n-unisolvent. This system of
equations is equivalent to the following system of equations

|7 fabua) gs(ah by @ D dt=yi—y, =12 1.

X

Let f“I—R: x> f(a, ¢, (a), ¢,(a),...¢,_,{a), x}). So the functions in
INT(S(f}) that interpolate the first » points are the functions /— R:
xoyo+ {3 [ d ae R

We show that the functions ¢, are continuous. Let J be the open
interval (xg, x,) and let D = {(x}, X5, o, X, _,, d, diy, ., &) | X} € J,
Xy<xh< oo <x),_,,a,eR}. Then D<= R* ! and the function

’

g DD (x\, x5, .. x,_,,d}. 45, .., d,)

.
1

- <x’, s s X1, €, J. flay, a5, ... a,, t)dt,
0

Xi
'\"2 ys t ' x:’" P ’ ’
f flay, d5, .., a,, t) dt, ..., f May, a5, ... a,, t)dr
o X2

is continuous and bijective. Since D is an open subset of R* ! g is a
homeomorphism by “Brouwer’s theorem on the invariance of domain”
(see, e.g., [2]) which guarantees that a continuous bijection of a manifold
is a homeomorphism. We conclude that the n + i-th component ¢,: D —» R
of the continuous functions g~ ' is itself continuous and that for all ae R
we have ¢i(a) = ¢i(-\.l’ Xas s Xy 19 & Y1 Vos V2= V15 s Vn— -yn—l)' This
implies that the functions ¢, are continuous which in turn guarantees
that 2 R — R:a— [ f(t) dt is a continuous function. We show that / is
injective. Let a,a,€R, a;#a,. Then [J+'(f“(1)—f*(1))dr=0 for all
ie{0,1,.,n—2}, which implies that there exist xje ]x,,x, [, 7€
{0, 1, .., n—2} such that f“'(x])=f“(x]). Since f is n-unisolvent these are
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the only such values in the whole of /. This means that everywhere in
the interval ]x,_,, x,[ we have f“(x)<f“(x) or f“(x)>/f“(x). Hence
j;‘f; f ey dt ;é[';; f4(t) dt. Of course, this just means that the function 4 is
injective. Hence its image has to be an open interval. It remains to show
that this interval is all of R, ie., that £ is bijective.

W.lo.g, let us assume that 4 is a strictly increasing function. So what we
have to verify is that lim,_, , ., A(a)= t+oo. Since 4 is strictly increasing,
for all xe]x,_;,x,] the function g'.: R— R:a— f“x) is also strictly
increasing. As a consequence of this we know that the limits lim,, _, , ., A(a)
and lim,, _, ., g'{a), xe ]x, _,, x,] exist (finite or infinite). Let us assume
that lim, ,, h(a)<oo, or equivalently, that lim,_ , [  f“()dr< .
Then we can find n distinct values x}e Jx,_,,x,),i€{0,1,..,n—1} such
that lim,_, _ g"..(a)=y* < oo. (If this were not possible we would be able
to find a subinterval [x),_,, x.,] of [x, _,, x,[ such that the function

S4x) for a>0

RX[.’C”*!,X"]—’R: (a> X)H{fo(x)'i‘(l fOI' ago

is 1-unisolvent. The existence of such a subinterval would already guaran-

tee, by Lemma 2.3, that oo =lim, . [ f“()dr<{3r | f“(¢) dt, which is
Yt

Np—|

a contradiction to our assumption.) Let (a,)..n be a sequence of real
numbers such that lim, _, . a, =o0. Now f*, ke N is the uniquely deter-
mined function in INT(f) that interpolates the n points (xX, f*(x})),
ie{0,1,.,n—1}. As k goes to infinity these points tend towards the n
points (x}*, y¥), respectively. Let f* be the uniquely determined function in
INT(f) that interpolates these points. Now Lemma 2.2 guarantees that
f* is the uniform limit of the sequence of functions {f“}, . This
implies that for all i€ {0, 1,...,n—2} we find (¥ f*()di=y, ,~y, ie,
there has to exist an a*eR such that f*=/“". Let ke N be such that
a, > a*. Then f%(x¥)> y* This is a contradiction. We conclude that
lim, _, . A(a)= cc.

A similar argument shows that lim,_, _, #(a) = — c0. This completes the
proof of the proposition. ||
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