Integrating Completely Unisolvent Functions*

Burkard Polster
Department of Mathematics, University of Canterbury, Christchurch. New Zealand
Communicated by András Kroó

Received February 9, 1994; accepted in revised form September 7, 1994

Abstract

We show that the integral of a completely n-unisolvent function defined on an interval is a completely $n+1$-unisolvent function. © 1995 Academic Press, Inc.

1. Introduction

In the following let f be a continuous function $\mathbb{Q}^{n} \times I \rightarrow \mathbb{R}$ where $I \subset \mathbb{R}$ is some interval and let $I N T(f)$ be the set of all functions $I \rightarrow \mathbb{R}: x \mapsto$ $f\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, x\right), a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$. If $n \geqslant 2$, let $f_{a}, a \in \mathbb{R}$ be the map $\mathbb{R}^{n-1} \times I \rightarrow \mathbb{R}:\left(a_{2}, a_{3}, \ldots, a_{n}, x\right) \mapsto f\left(a_{2}, a_{2}, a_{3}, \ldots, a_{n}, x\right)$. A function $g \in I N T(f)$ interpolates $m \in \mathbb{N}$ points $\left(x_{i}, y_{i}\right) \in I \times \mathbb{R}, i \in\{1,2, \ldots, m\}$ if $g\left(x_{i}\right)=y_{i}$ for all $i \in\{1,2, \ldots, m\}$.

We say that f is n-unisolvent (or unisolvent of degree n) if for any choice of n points $\left(x_{i}, y_{i}\right) \in I \times \mathbb{R}, i \in\{1,2, \ldots, n\}, x_{1}<x_{2}<\cdots<x_{n}$ there exists a uniquely determined $g \in I N T(f)$ that interpolates all n points. The classical example for such a function is $p_{n}: \mathbb{R}^{n} \times I:\left(a_{1}, a_{2}, \ldots, a_{n}, x\right) \mapsto \sum_{k=1}^{n} a_{k} x^{n-k}$.
If $n=1$, we will say that f is completely 1 -unisolvent if it is 1 -unisolvent. For $n \geqslant 2$ we say that f is completely n-unisolvent if and only if:
(1) the function f is n-unisolvent;
(2) for all $a \in \mathbb{R}$ the function f_{a} is completely ($n-1$)-unisolvent.

Let $\mathscr{F}_{n}^{I}\left(\overline{\mathcal{F}}_{n}^{I}\right)$ be the set of all (completely) n-unisolvent functions $\mathbb{R}^{n} \times$ $I \rightarrow \mathbb{R}$. The function $p_{n}, n \in \mathbb{N}$, as we defined it above, is contained in $\overline{\mathscr{F}}_{n}$. Note that this is just the interpolation system $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ combined into a completely n-unisolvent function. More generally, if $\left\{u_{i}\right\}_{i=0}^{n-1}$ is a complete Chebyshev system (see, e.g., [1]) of continuous functions defined on the interval I, then $\mathbb{R}^{n} \times I \rightarrow \mathbb{R}:\left(a_{1}, a_{2}, \ldots, a_{n}, x\right) \mapsto \sum_{k=1}^{n} a_{k} u_{n-k}$ is a completely n-unisolvent function.
Here are some examples of completely 2 -unisolvent functions that do not arise from complete Chebyshev systems in this manner: Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a

* This research was supported by a Feodor Lynen fellowship.

0021-9045/95 \$12.00
Copyright if: 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved
continuously differentiable function with a bijective derivative. Then $f^{h}: \mathbb{R}^{2} \times \mathbb{R}:\left(a_{1}, a_{2}, x\right) \mapsto h\left(x+a_{1}\right)+a_{2}$ is a completely 2 -unisolvent function. Examples for h are the functions $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto x^{2 n}, n \in \mathbb{N}$. In [5, §2] it is shown that the graphs of the functions in $\operatorname{INT}\left(f^{h}\right)$ together with the verticals in the $x y$-plane form the line set of an affine plane that has the $x y$-plane as its point set. The sets $I N T\left(f_{a}^{h}\right), a \in \mathbb{R}$ correspond to parallel classes of lines in this plane. Affine planes like this are examples of 2-dimensional affine planes. In [3] we show that any 2 -dimensional affine plane corresponds to a completely 2 -unisolvent function. In the same paper we also show how (in general non-linear) completely 3-unisolvent functions can be constructed from so-called 2-dimensional Laguerre planes.

Given an arbitrary (completely) n-unisolvent function $f \in \mathscr{I}_{n}^{I}\left(f \in \overline{\mathscr{F}}_{n}^{I}\right)$ and a subinterval I ' of I, it is clear that the "restriction" of f to I ' is also a (completely) n-unisolvent function.

For more information about unisolvent functions the reader is referred to [4] and [6].

2. Integrating Completely Unisolvent Functions

Let $I \subset \mathbb{P}$ be an interval that contains the point b. For every $f \in \mathscr{I}_{n}^{I}$ we define

$$
S^{h}(f): \mathbb{R}^{n+1} \times I \rightarrow \mathbb{R}:\left(a_{1}, a_{2}, \ldots, a_{n+1}, x\right) \mapsto \int_{b}^{x} f\left(a_{1}, a_{2}, \ldots, a_{n}, t\right) d t+a_{n+1}
$$

The aim of this note is to show that
Proposition 2.1. Let $f \in \overline{\mathscr{I}}_{n}^{I}, n \in \mathbb{N}$ where I is an interval that contains the point b. Then $S^{b}(f) \in \overline{\mathscr{I}}_{n+1}^{I}$.

In the special case where f arises from a complete Chebyshev system, as described above, this result is well-known (see, e.g., [7, Lemma 13.2]).

In order to be able to prove 2.1 we will make constant use of some facts we want to fix in the form of two lemmas. As a special case of what Tornheim proved in [6, Theorem 5] we have

Lemma 2.2. Let $I \subset \mathbb{R}$ be a closed interval, let $f \in \mathscr{I}_{n}^{l}$, and let n sequences of points $\left\{\left(x_{i, j}, y_{i, j}\right)\right\}_{i \in \mathbb{N}}, j \in\{1,2, \ldots, n\}$ in $I \times \mathbb{R}$ converge to n points $\left(x_{j}, y_{j}\right)$, respectively, such that $x_{i, j} \neq x_{i, k}$ and $x_{j} \neq x_{k}$ if $j \neq k$. Furthermore, for all $i \in \mathbb{N}$ let f^{i} be the uniquely determined function in $I N T(f)$ that interpolates the n points $\left(x_{i, j}, y_{i, j}\right), j \in\{1,2, \ldots, n\}$. Then the sequence of functions $\left\{f^{i}\right\}_{i \in \mathbb{N}}$ converges uniformly to the uniquely determined function in $I N T(f)$ that interpolates the n points $\left(x_{j}, y_{j}\right), j \in\{1,2, \ldots, n\}$.

We also need the following

Lemma 2.3. Let $I \subset \mathbb{P}$ be some interval that contains 0 , let $f \in \mathscr{I}_{1}^{I}$ and $f(1,0)>f(0,0)(f(1,0)<f(0,0))$. Then all functions $\mathbb{R} \rightarrow \mathbb{R}: a \mapsto f(a, x)$, $x \in I$ are strictly increasing (decreasing) homeomorphisms. Furthermore, given $x_{1}, x_{2} \in I, x_{1}<x_{2}$, the function $g: \mathbb{R} \rightarrow \mathbb{R}: a \mapsto \int_{x_{1}}^{x_{2}} f(a, t) d t$ is a strictly increasing (decreasing) homeomorphism.

Proof. Let $f(1,0)>f(0,0)$. Let $x \in I$. If $f(1, x) \leqslant f(0, x)$, then there exists an $x^{*} \in I$ such that $f\left(1, x^{*}\right)=f\left(0, x^{*}\right)$. This is impossible since $f \in I_{1}^{I}$. The function $\mathbb{P} \rightarrow \mathbb{R}: a \mapsto f(a, x)$ is continuous and bijective by definition, i.e., it is a homeomorphism. Since $f(1, x)>f(0, x)$, this homeomorphism is strictly increasing. Now it is clear that the function g is continuous and strictly increasing. We show that g is bijective. For all $a \in \mathbb{R}$ let $m_{a}:=$ $\min _{x \in\left[x_{1}, x_{2}\right]}\{f(a, x)\}$ and let x_{a} be a point in $\left[x_{1}, x_{2}\right]$ where f_{a} assumes this minimum. The function $\mathbb{R} \rightarrow \mathbb{R}: a \mapsto m_{a}$ is clearly strictly increasing and it therefore suffices to show that $\lim _{a \rightarrow \infty} m_{a}=\infty$ to make sure that indeed $\lim _{a \rightarrow \infty} \int_{x_{1}}^{x_{2}} f(a, t) d t=\infty$. Let $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ be a strictly increasing sequence of real numbers such that $\lim _{i \rightarrow,} a_{i}=\infty$. Assume the sequence $\left\{m_{a_{i}}\right\}_{i \in \mathbb{N}}$ has a finite accumulation point m^{*}, i.e., $\lim _{i \rightarrow \infty} m_{a_{i}}=m^{*}$. Then we can find a subsequence $\left\{a_{i}^{\prime}\right\}_{i \in \otimes}$ of $\left\{a_{i}\right\}_{i \in \otimes}$ and an $x^{*} \in\left[x_{1}, x_{2}\right]$ such that $\lim _{i \rightarrow \infty} m_{a_{j}^{\prime}}=m^{*}$ and $\lim _{i \rightarrow \infty} x_{a_{i}^{\prime}}=x^{*}$. Since f is 1 -unisolvent there is a uniquely determined $a^{*} \in \mathbb{R}$ such that $f_{a^{*}}\left(x^{*}\right)=m^{*}$. By Lemma 2.2 , we know that the sequence of functions $\left\{f_{a_{i}}\right\}_{i \in \mathbb{N}}$ converges uniformly to the function $f_{a^{*}}$ on the interval $\left[x_{1}, x_{2}\right]$. This implies that m^{*} $=\min _{x \in\left[x_{1}, x_{2}\right]}\left\{f\left(a^{*}, x\right)\right\}$. Let $i \in \mathbb{N}$ be such that $a_{i}^{\prime}>a^{*}$. Then $m^{*}<m_{a^{*}}$. This is a contradiction. We can use a similar argument to show that $\lim _{a \rightarrow-\infty} \int_{x_{1}}^{x_{2}} f(a, t) d t=-\infty$. Hence g is bijective.

The respective conclusions in the case $f(1,0)<f(0,0)$ can be derived in a similar fashion.

Proof of 2.1. W.l.o.g. we may assume that $b=0$. We abbreviate $S^{b}(f)$ by $S(f)$.

We are going to use induction on n to prove this result. Let $n=1$. Furthermore, let $a \in \mathbb{R}$. Then $S(f)_{a}$ is the function $\mathbb{R} \times I \rightarrow \mathbb{R}:\left(a_{2}, x\right) \mapsto$ $\int_{0}^{x} f(a, t) d t+a_{2}$. This function is clearly completely 1 -unisolvent. Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}, x_{0}, x_{1} \in I, x_{0}<x_{1}$. We have to show that there is a uniquely determined function in $I N T(S(f))$ that interpolates both points. The functions that interpolate the point $\left(x_{0}, y_{0}\right)$ are the functions $I \rightarrow \mathbb{R}$: $x \mapsto y_{0}+\int_{x_{0}}^{x} f(a, t) d t, a \in \mathbb{R}$. It therefore suffices to show that the function $\mathbb{R} \rightarrow \mathbb{R}: a \mapsto \int_{x_{0}}^{x_{1}} f(a, t) d t$ is bijective. By Lemma 2.3, this is the case.

Let the statement in the proposition be true for all functions in $\overline{\mathscr{I}}_{n-1}^{I}$ for some $n \geqslant 2$ and let $f \in \overline{\mathscr{I}}_{n}^{I}$. Furthermore, let $a \in \mathbb{R}$. Then $S(f)_{a}=S\left(f_{a}\right)$.

Since $f_{a} \in \overline{\mathscr{I}}_{n-1}^{\prime}$ we conclude that $S(f)_{a} \in \overline{\mathscr{I}}_{n}^{I}$. Now we have to show the following: Let $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right) \in I \times \mathbb{R}, \quad x_{i}<x_{i+1}$, $i \in\{0,1, \ldots, n-2\}$ be n points, and let $x_{n} \in I, x_{n-1}<x_{n}$. Then for all $y \in \mathbb{R}$ there exists a uniquely determined function in $I N T(S(f))$ that interpolates the n points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)$ and the point $\left(x_{n}, y\right)$. The functions that interpolate the (first) n points are the functions $I \rightarrow \mathbb{R}$: $x \mapsto y_{0}+\int_{x_{0}}^{x} f\left(a, \phi_{1}(a), \phi_{2}(a), \ldots, \phi_{n-1}(a), t\right) d t, a \in \mathbb{R}$ where the functions $\phi_{i}: \mathbb{R} \rightarrow \mathbb{R}, i \in\{1,2, \ldots, n-1\}$ are uniquely determined by the $n-1$ equations

$$
\int_{x_{0}}^{x_{t}} f\left(a, \phi_{1}(a), \phi_{2}(a), \ldots, \phi_{n-1}(a), t\right) d t=y_{i}-y_{0}, i=1,2, \ldots, n-1
$$

since for all $a \in \mathbb{R}$ the function $S(f)_{a}$ is n-unisolvent. This system of equations is equivalent to the following system of equations

$$
\int_{x_{i-1}}^{x_{i}} f\left(a, \phi_{1}(a), \phi_{2}(a), \ldots, \phi_{n-1}(a), t\right) d t=y_{i}-y_{i-1}, i=1,2, \ldots, n-1 .
$$

Let $f^{a}: I \rightarrow \mathbb{R}: x \mapsto f\left(a, \phi_{1}(a), \phi_{2}(a), \ldots, \phi_{n-1}(a), x\right)$. So the functions in $I N T(S(f))$ that interpolate the first n points are the functions $I \rightarrow \mathbb{R}$: $x \mapsto y_{0}+\int_{x_{0}}^{x} f^{a}(t) d t, a \in \mathbb{R}$.

We show that the functions ϕ_{i} are continuous. Let J be the open interval $\left(x_{0}, x_{n}\right)$ and let $D:=\left\{\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-1}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right) \mid x_{1}^{\prime} \in J\right.$, $\left.x_{1}^{\prime}<x_{2}^{\prime}<\cdots<x_{n-1}^{\prime}, a_{1}^{\prime} \in \mathbb{R}\right\}$. Then $D \subset \mathbb{R}^{2 n-1}$ and the function

$$
\begin{aligned}
& g: D \rightarrow D:\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-1}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right) \\
& \mapsto\left(x_{1}^{\prime}, \ldots, x_{n-1}^{\prime}, a_{1}^{\prime}, \int_{x_{0}}^{x_{1}^{\prime}} f\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}, t\right) d t,\right. \\
& \left.\int_{x_{1}^{\prime}}^{x_{2}^{\prime}} f\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}, t\right) d t, \ldots, \int_{x_{n-2}^{\prime}}^{x_{n-1}^{\prime}} f\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}, t\right) d t\right)
\end{aligned}
$$

is continuous and bijective. Since D is an open subset of $\mathbb{R}^{2 n-1}, g$ is a homeomorphism by "Brouwer's theorem on the invariance of domain" (see, e.g., [2]) which guarantees that a continuous bijection of a manifold is a homeomorphism. We conclude that the $n+i$-th component $\bar{\phi}_{i}: D \rightarrow \mathbb{R}$ of the continuous functions g^{-1} is itself continuous and that for all $a \in \mathbb{R}$ we have $\phi_{i}(a)=\bar{\phi}_{i}\left(x_{1}, x_{2}, \ldots, x_{n-1}, a, y_{1}-y_{0}, y_{2}-y_{1}, \ldots, y_{n-1}-y_{n-2}\right)$. This implies that the functions ϕ_{i} are continuous which in turn guarantees that $h: \mathbb{R} \rightarrow \mathbb{R}: a \rightarrow \int_{x_{0}}^{x_{n}} f^{a}(t) d t$ is a continuous function. We show that h is injective. Let $a_{1}, a_{2} \in \mathbb{R}, a_{1} \neq a_{2}$. Then $\int_{x_{i}}^{x_{i+1}}\left(f^{a_{1}}(t)-f^{a_{2}}(t)\right) d t=0$ for all $i \in\{0,1, \ldots, n-2\}$, which implies that there exist $\left.x_{i}^{\prime} \in\right] x_{i}, x_{i+1}[, i \in$ $\{0,1, \ldots, n-2\}$ such that $f^{a_{1}}\left(x_{i}^{\prime}\right)=f^{a_{2}}\left(x_{i}^{\prime}\right)$. Since f is n-unisolvent these are
the only such values in the whole of I. This means that everywhere in the interval $] x_{n-1}, x_{n}\left[\right.$ we have $f^{a_{1}}(x)<f^{u_{2}}(x)$ or $f^{a_{1}}(x)>f^{a_{2}}(x)$. Hence $\int_{x_{0}}^{x_{n}} f^{a_{1}}(t) d t \neq \int_{x_{0}}^{x_{n}} f^{a_{2}}(t) d t$. Of course, this just means that the function h is injective. Hence its image has to be an open interval. It remains to show that this interval is all of \mathbb{R}, i.e., that h is bijective.
W.l.o.g., let us assume that h is a strictly increasing function. So what we have to verify is that $\lim _{a \rightarrow \pm \infty} h(a)= \pm \infty$. Since h is strictly increasing, for all $\left.x \in] x_{n-1}, x_{n}\right]$ the function $g_{x}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}: a \rightarrow f^{a}(x)$ is also strictly increasing. As a consequence of this we know that the limits $\lim _{a \rightarrow \pm \infty} h(a)$ and $\left.\left.\lim _{a \rightarrow+\infty} g_{x}^{\prime}(a), x \in\right] x_{n-1}, x_{n}\right]$ exist (finite or infinite). Let us assume that $\lim _{a \rightarrow \infty} h(a)<\infty$, or equivalently, that $\lim _{a \rightarrow \infty} \int_{x_{n-1}}^{x_{n}} f^{a}(t) d t<\infty$. Then we can find n distinct values $\left.\left.x_{i}^{*} \in\right] x_{n-1}, x_{n}\right], i \in\{0,1, \ldots, n-1\}$ such that $\lim _{a \rightarrow \infty} g_{x^{*}}^{\prime}(a)=y_{i}^{*}<\infty$. (If this were not possible we would be able to find a subinterval $\left[x_{n-1}^{\prime}, x_{n}^{\prime}\right]$ of $\left[x_{n-1}, x_{n}[\right.$ such that the function

$$
\mathbb{R} \times\left[x_{n-1}^{\prime}, x_{n}^{\prime}\right] \rightarrow \mathbb{R}:(a, x) \mapsto \begin{cases}f^{a}(x) & \text { for } a>0 \\ f^{0}(x)+a & \text { for } \quad a \leqslant 0\end{cases}
$$

is 1 -unisolvent. The existence of such a subinterval would already guarantee, by Lemma 2.3, that $\infty=\lim _{a \rightarrow \infty} \int_{x_{n-1}^{\prime}}^{x_{n}^{\prime}} f^{a}(t) d t \leqslant \int_{x_{n-1}}^{x_{n}} f^{a}(t) d t$, which is a contradiction to our assumption.) Let $\left(a_{k}\right)_{k \in \mathbb{N}}$ be a sequence of real numbers such that $\lim _{k \rightarrow \infty} a_{k}=\infty$. Now $f^{a_{k}}, k \in \mathbb{N}$ is the uniquely determined function in $I N T(f)$ that interpolates the n points $\left(x_{i}^{*}, f^{a_{k}}\left(x_{i}^{*}\right)\right.$), $i \in\{0,1, \ldots, n-1\}$. As k goes to infinity these points tend towards the n points (x_{i}^{*}, y_{i}^{*}), respectively. Let f^{*} be the uniquely determined function in $\operatorname{INT}(f)$ that interpolates these points. Now Lemma 2.2 guarantees that f^{*} is the uniform limit of the sequence of functions $\left\{f^{a_{k}}\right\}_{k \in \mathbb{N}}$. This implies that for all $i \in\{0,1, \ldots, n-2\}$ we find $\int_{x_{i}}^{x_{i+1}} f^{*}(t) d t=y_{i+1}-y_{i}$, i.e., there has to exist an $a^{*} \in \mathbb{R}$ such that $f^{*}=f^{a^{*}}$. Let $k \in \mathbb{N}$ be such that $a_{k}>a^{*}$. Then $f^{a_{k}}\left(x_{i}^{*}\right)>y_{i}^{*}$. This is a contradiction. We conclude that $\lim _{a \rightarrow \infty} h(a)=\infty$.

A similar argument shows that $\lim _{a \rightarrow-\infty} h(a)=-\infty$. This completes the proof of the proposition.

References

1. S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics, Interscience, New York, 1966.
2. W. S. Massay, Singular Homology Theory, Springer-Verlag, New York/Heidelberg/Berlin, 1980.
3. B. Polster, Integrating and differentiating two-dimensional incidence structures, Arch. Math. 64 (1995), 75-85.
4. J. R. Rice, The approximation of functions I, Addison-Wesley, Reading, MA, 1964.
5. H. Salzmann, Zur Klassifikation topologischer Ebenen. III, Abh. Math. Sem. Univ. Hamburg 28 (1965), 250-261.
6. L. Tornheim, On n-parameter families of functions and associated convex functions, Trans. AMS 69 (1950), 457-467.
7. R. Zielke, Discontinuous Cebyšhev systems, Lecture Notes in Mathematics, No. 707. Springer-Verlag, Berlin/New York/Heidelberg, 1979.
